The Power of Scale for Parameter-Efficient Prompt Tuning

Brian Lester, Rami Al-Rfou, Noah Constant {brianlester, rmyeid, nconstant}@google.com

(11B params)

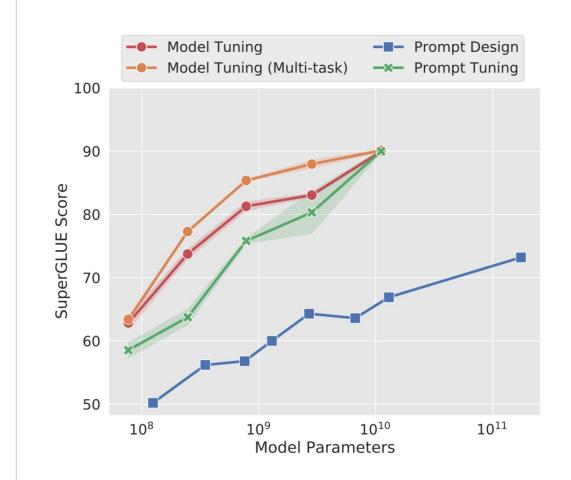
Prompt Tuning

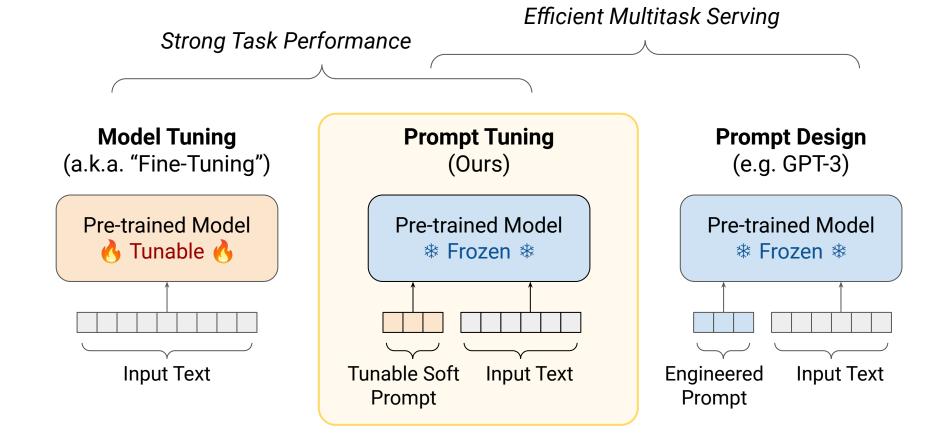
Prompt Tuning

- Keep pre-trained T5 model frozen
- Learn continuous prompts for downstream tasks, prepended to input embeddings.

Closes Gap with Model Tuning

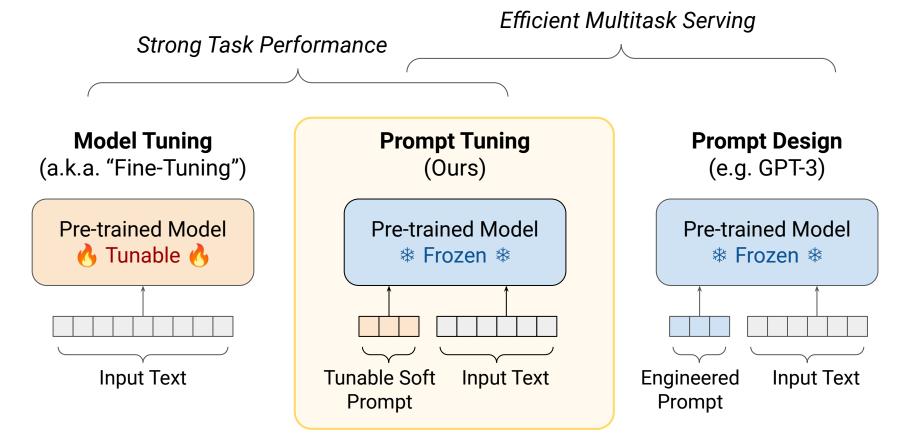
- As scale increases, matches model tuning.
- With <0.01% task-specific parameters!





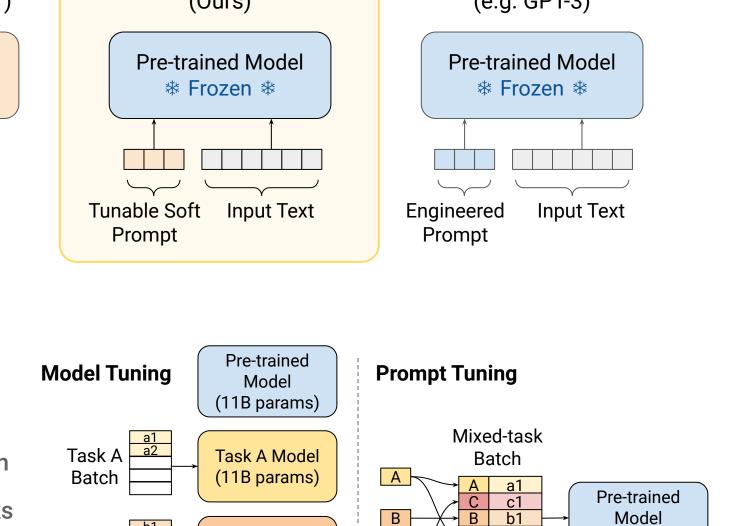
Efficient Serving

- Tiny task-specification
- Mixed-batch multitask inference



Task B Model

(11B params)



Ablation Study

Best Settings (—X—)

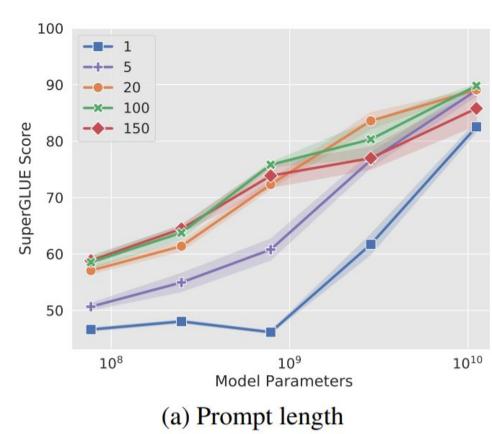
- Prompt length: 100
- **Prompt initialization**: Class Labels
- **Pre-training method:** LM Adaptation
- LM adaptation steps: 100K

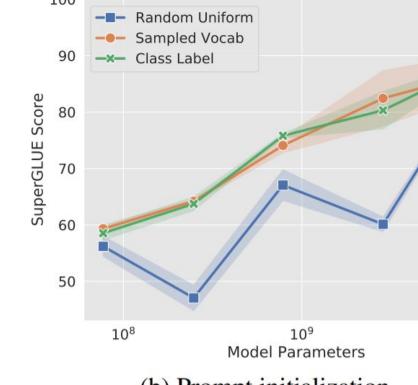
Robustness with Scale

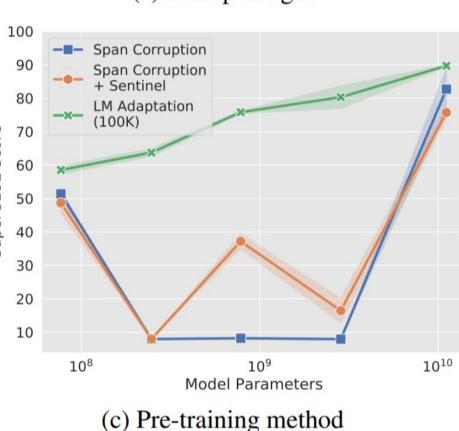
 For larger models, even non-optimal settings do well.

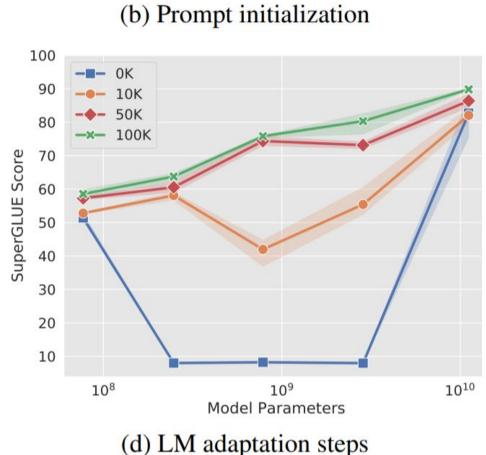
LM Adaptation

- T5 pre-training uses "sentinel" tokens, which are never seen in fine-tuning.
- Prepare model for prompting by training on standard LM task with realistic text.









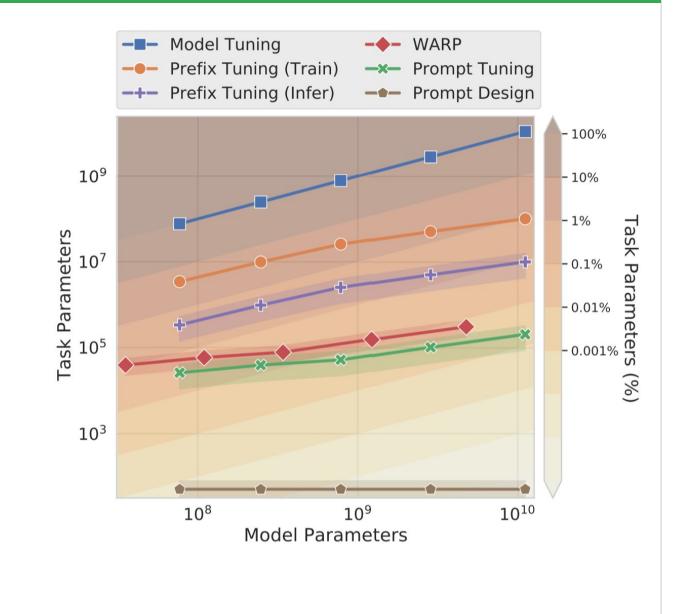
Parameter Efficiency & Resilience to Domain Shift

Parameter Efficiency

- For T5-XXL, we add just 0.003% parameters!
- Parameters restricted to input layer (cf. "Prefix Tuning" per-layer).
- Adding ~3% parameters to T5-XXL (cf. "Adapters") ≈ adding BERT-Large.

Resilience to Domain Shift

- Train and checkpoint on SQuAD train/dev.
- Evaluate zero-shot on other QA tasks.
- Large gains, especially for larger domain shifts (TextbookQA: +12.5).
- Model Domain **Dataset Prompt** 94.8 ± 0.1 Wiki 94.9 ± 0.2 SQuAD TextbookQA Book **66.8** ± 2.9 **BioASQ 79.1** ± 0.3 Bio **RACE** Exam **88.8** ± 0.2 Movie 67.7 ± 1.1 DuoRC **68.9** ± 1.7 67.1 ± 1.9



(20K params each)

Prompt Ensembling & Interpretability

Prompt Ensembling

- Multi-task serving enables efficient ensembling by learning multiple prompts for one task.
- Prompt ensemble consistently beats best prompt in ensemble.

10				
Dataset	Metric	Average	Best	Ensemble
BoolQ	acc.	91.1	91.3	91.7
CB	acc.	99.3	100.0	100.0
	F1	99.0	100.0	100.0
COPA	acc.	98.8	100.0	100.0
MultiRC	EM	65.7	66.3	67.1
	$F1_a$	88.7	89.0	89.4
ReCoRD	EM/F1	92.7	92.9	93.2
	F1	99.4	93.5	93.9
RTE	acc.	92.6	93.5	93.5
WiC	acc.	76.2	76.6	77.4
WSC	acc.	95.8	96.2	96.2
SuperGLUE (dev)		90.5	91.0	91.3

Interpretability

- Examined top-5 nearest neighbor tokens by cosine similarity.
- Even with random init, label verbalizers often appear in top-5 nearest tokens.
- Nearest neighbors show strong "word-like" clusters:
 - Lexically-based clusters:
 - { Technology / technologies / technologies / technologies }
 - Semantically-based clusters:
 - { entirely / completely / totally / altogether / 100% }

Selected References

- [1] Li and Liang (2021) Prefix-Tuning: Optimizing Continuous Prompts for Generation
- [2] Hambardzumyan et al. (2021) WARP: Word-level Adversarial ReProgramming
- [3] Houlsby et al. (2019) Parameter-Efficient Transfer Learning for NLP