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Prompt Tuning

● This presentation is essentially “prompt tuning and such”, it covers our EMNLP 
2021 paper, our own follow ups, and insights gleaned from others work in the 
space.

● There is a lot to cover so we’ll probably stay at the concept level but I’m happy 
to dive into details during questions.



01

Background:
NLP

I know there is a large mix in the audience, all working on different things, so I’m 
going to start with a quick crash course in NLP, touching on just the building blocks 
you’ll need for prompt tuning



Words to Numbers
1. Tokenize

○ Split a string of text 
into tokens

○ Some techniques will 
split words too

2. Intergerize
○ Convert tokens to 

integers via a 
vocabulary

3. Embed
○ Turn an integer into a 

vector by looking it up 
in a table

○ This is generally the 
first layer of a network

Input: "I really hated that movie!"

Tokenized: 
  ['▁I', '▁really', '▁hate', 'd', '▁that', '▁movie', '!']

Integerized:
[27, 310, 5591, 26, 24, 1974, 55]

Embedded:
[[ 8.0000000e+00 -6.7500000e+00  1.5078125e+00 ... -3.5156250e+00, 2.8437500e+00  2.7000000e+01]
 [ 7.7812500e+00 -3.0625000e+00  1.2687500e+01 ... -1.2812500e+01, 1.3812500e+01  2.6625000e+01]
 [ 1.4625000e+01 -4.6157837e-04 -2.4625000e+01 ...  6.1875000e+00, 1.2750000e+01  5.2187500e+00]
 ...
 [ 8.3750000e+00 -6.6796875e-01 -1.5703125e+00 ... -6.1250000e+00, 7.5000000e+00  3.8250000e+01]
 [ 2.1250000e+01 -8.0625000e+00  3.4179688e-01 ...  2.5500000e+01, 1.0250000e+01  4.0000000e+00]
 [-1.3687500e+01  7.6562500e+00 -1.9750000e+01 ...  9.1875000e+00, 5.2187500e+00  5.7250000e+01]]

Embedded Shape: (7, 512)

● We have text, we can’t just shove that into a model, we need to represent it 
somehow

● We can’t create a unique representation from a whole string, there are too 
many possibilities, need to compose smaller representations

● Split the text into individual tokens that we can have representations for.
○ Some split them based on linguistics, into what we think of as words
○ Others split based on the distribution of training text, often creating 

subword tokens with division that don’t necessarily follow human 
intuition

● Then we convert each string into integers, this just makes it easier to work 
with.

● We “embed” each token, that is, look up it’s representation based on it’s 
integer value.

○ Gives us a vector for each token
○ Our sentence is now a [Seq-Len, Embed-Size] matrix

■ This representation of a sentence is important to remember
○ Embedding is generally the first layer of a network and trained with it.



Transformers
An attention model for processings sets 
of input.

● Attention is a method to 
re-contextualize the 
representation of a token as a 
mixture of the representations of 
the other tokens.

● Attention allows for long distance 
dependencies with short 
computational paths

● The parallel nature allows for 
efficient scaling to huge models 
and dataset sizes.

● Includes position information for 
sequence processing.

● Transformers are the current star of NLP.
● They allow use to recontextualized a token based on the rest of the input with 

attention.
● Attention allows long range dependencies with constant (O(1)) computation, 

regardless of distance between works.
● Highly parallel allowing for pre-training on massive datasets.
● Attention works on sets, we encode positional information in the tokens to 

enable sequence processing. 



Language Model 
Pre-Training
There are lots of relationships in some 
input space that can be helpful, but can’t 
effectively be learned from the dataset 
you actually care about.

First train a model on a larger datasets so 
it can learn those associations before you 
train it on your real dataset.

For NLP, we often create this task from 
raw text. For example, predicting the next 
word, or recovering spans of text that we 
hid from the input.

● Relations between words, tenses (a dog and a cat are both similar pets, etc) 
can be helpful in downstream tasks, but maybe can’t be inferred from your 
dataset because it is too small.

● Training on a larger dataset first, called transfer learning, common in many 
areas, for example starting with a model trained on Image Net in CV of 
finetuning BERT in NLP

● LM objective, span corruption, MLM

Image from BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding (https://arxiv.org/abs/1810.04805)

https://arxiv.org/abs/1810.04805
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Background:
Fine Tuning

● I’m sure a lot of you will know most of the information in this section but it’s 
useful for setting the stage for the motivation for a lot of this work

● We are going to talk a little bit about how we use large pre-trained language 
models in NLP.



Fine Tuning
Given:

● A pretrained model
● A labeled dataset

Update weights of pretrained model by 
supervised learning on labeled dataset.

Strong performance on many tasks. 
Starting point of most SotA methods 
today.

● GPT (Radford et al., 2018)
● BERT (Devlin et al., 2019)
● T5 (Raffel et al., 2020)

● Fine Tuning a large pre-trained model is the defacto approach for strong 
performance in NLP

● There really is nothing “fine” about fine-tuning, you update all the parameters, 
that’s hitting it will a pretty big hammer. We highlight this by calling it model 
tuning in the paper.

● Lots of famous examples like BERT or T5

Image from BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding (https://arxiv.org/abs/1810.04805)

https://arxiv.org/abs/1810.04805


Fine Tuning
Some sharp edges:

● Each model you train is a fork.

● These models are so big even 
fine-tuning often takes complex 
SPMD programming and large 
compute platform.

● Serving can be difficult
○ A model has to be served 

for each task.
○ Need enough requests to 

keep model saturated.
○ Swapping models into 

memory can take a long 
time.

Issues with Fine Tuning:
● Dealing with so many copies of the same huge model

○ Disk space is cheap, but some models, like LaMDA (Thoppilan et al., 2022), 
takes almost 500 GB on disk

● Even Fine-tuning needs parallel computation.
○ With BERT, the hard part was the pre-training, it was, mostly, 

reasonable to finetune BERT on a consumer GPU
● Complicates serving, explained later.
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Background:
Prompt Design

Another piece of background is the idea of Prompt Design



Prompt Design
Can we add text to our model to trick a language model 
into doing what we want?

● Knowledge Extraction from LMs  (Petroni et al., 2019)

● GPT-3 (Brown et al., 2020)

We don’t have to copy our model but there are still 
problems:

● Human effort to get prompts
● Prompts are specific to models
● Limit to the number of supervised examples 

you can fit in the input, often balloons the 
sequence length, increasing latency.

● Poor performance
○ Mitigated by fine-tuning the model

                               (Schick and Schütze, 2021; Le Scao and Rush, 2021;
                                        Webson and Pavlick, 2021)

○ Searching for the best text prompts
(Jiang et al., 2020; Shin et al., 2020)

● Can we trick our model without needing to update it?
● Introduced in the Knowledge extraction from LMs literature

○ Popularized, especially for supervised tasks, by GPT-3
● Explain format here

○ More like import formatting, adding task descriptions before an input, 
question marks after, etc.

○ Can include supervised examples, people generally refer to this as 
few-shot or in-context learning

● Pros
○ You don’t need to fork your model so you can optimize its serving really 

well
○ Text prompts feel very interpretable

● Cons
○ You need human designed prompts (search in text space is hard), art 

not science
○ You need to repeat this human search when the underlying model 

changes
○ You can only fit a few supervised examples in the model’s context, 

especially for things like reading comprehension with long inputs.
■ This can also increase latency as you have to process longer 

sequences.
○ Poor Performance

■ GPT-3 175B does 5 points worse on super glue than T5 Base 
which has 0.1% of the parameters



■ Fine-tuning means you have to copy the model again
■ Searching in the text space is hard

Image from Language Models are Few-Shot Learners 
(https://arxiv.org/abs/2005.14165)

https://arxiv.org/abs/2005.14165
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Our Approach:
Prompt Tuning (Lester et al., 2021)

● Accepted to EMNLP 2021
● Google AI Blog Post

Our approach, Prompt Tuning, splits the difference.

EMNLP 2021

https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html


Prompt Tuning
Prepend virtual tokens to input.

Prompt and input representations flow through 
model like normal.

Learn embeddings of only these special 
tokens, via backprop. Keep rest of model fixed.

Advantages:
● Lets us use whole training dataset.
● Lets us automatically learn a new prompt 

for a new model.
● Lets us keep the model frozen.
● Prompts are much smaller.

Pre-trained Model
❄ Frozen ❄

�� �� ��

Input TextTunable Soft Prompt

● Prompt Tuning works like this
○ We essentially have a sequence of virtual tokens.
○ These are embedded with a new embedding table.
○ We prepend this to the normal embedded input sequence.
○ We run the model forward pass (with this new longer sequence) to get 

a loss.
○ We run the model backward pass to get gradients.
○ We only apply the gradient updates to the new embedding table, the 

main model is kept fixed.

Prompt Design can be thought of as searching in the text space over tokens with fixed 
embeddings
Prompt Tuning can be thought of as searching in the embedding space with a fixed 
text prompt.

● It has advantages
○ We aren’t limited by the number of examples we can fit into the models 

context, we can learn from a whole dataset.
■ We also don’t have as long of a sequence length so we have 

faster inference
○ We can automatically learn prompts for any model or dataset, it is just 

backprop, we have been doing that for years.
■ We don’t have manual search for prompts on each model.

○ The main model is frozen so we only have to save the very small 



○ prompts to disk.



Prompt Tuning

● The main model being frozen gives gives a lot of advantages when serving a 
model.

● Model Tuning:
○ Each task needs to own model, and that model needs to live in 

memory
■ You need enough requests to saturate the model to justify it 

living in memory
■ You need to swap it into memory, slow because so big
■ Either run in O(N) + swap time or O(1) with massive compute 

resources.
○ Each input only goes to the task model, smaller batches

● Prompt Tuning:
○ Each task is a prompt, much smaller
○ Only need to serve one copy of the frozen model
○ Prompts for various tasks can be applied to different inputs

■ A single, larger mixed task batch of size N
● We have an internal server prototype at the moment where we can pass the 

input text and a prompt to running model, allowing for a multi-tasking with a 
single model server.



Prompt Tuning

Pre-trained Model
🔥 Tunable 🔥

Pre-trained Model
❄ Frozen ❄

Pre-trained Model
❄ Frozen ❄

Model Tuning
(a.k.a. “Fine-Tuning”)

Prompt Tuning
(Ours)

Prompt Design
(e.g. GPT-3)

Input Text Input TextTunable Soft 
Prompt

Input TextEngineered 
Prompt

Strong Task Performance
Efficient Multitask Serving

This diagram reinforces some of the core differences between various approaches. 

● Model Tuning gives strong performance but need to fork the model
● Prompt Design can do multitask serving with a single model but has poor 

performance
● Prompt Tuning has the best of both with strong performance and a frozen 

core.



Prompt Tuning has the smallest 
parameter count compared to other 
approaches that focus on learning a 
continuous representation of prompt 
tokens.

Related Work

While we were working on this project a 
few other papers doing similar work 
appeared on arXiv

● Li and Liang (2021) 
● Hambardzumyan et al. (2021)
● Liu et al. (2021a)
● Qin and Eisner (2021)
● Zhong et al. (2021) 
● Logeswaran et al. (2020)

A recent survey paper does a good job of 
going over a lot of these approaches.

● Liu et al. (2021b)

● While we were working on this, other paper came out :(
● Graph shows the number of updatable parameters each method requires 

based on if it was applied to T5
● Prompt Tuning is the most parameter efficient method

○ This is because our approach is the simplest, removing things like 
per-layer variables from while other methods needed.

○ Some methods like adapters (Houlsby, et al., 2019) applied to t5 would 
result in add about as many parameters as BERT-Large.

● There is more detail about these other methods in our paper and in this 
Survey from Liu (different Liu) et al. at CMU, and I encourage you to checkout 
these other works.

This graph shows the number of task specific (updatable parameters) several 
different similar works use. Each band represents the mean and stddev of the 
parameter count as you vary the prompt length from 1 to 100 with T5 as the base 
model.

Note: The WARP line if offset because they are an Encoder Only architecture.

In addition to being the most parameter efficient, our method is the simplest of all 
these approaches. It doesn’t have:

● Variables at every layer
● Text and Learned Prompts woven throughout the text

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00121
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2104.06599
https://doi.org/10.18653/v1/2021.naacl-main.398
https://arxiv.org/abs/2012.09543
http://arxiv.org/abs/2107.13586


● Updates to the prompt and the model
● Updates to the text itself
● Trainable output layer



An Adapter, placed inside of of a 
Transformer layer, allows for a 
position-independent rewrite of 
activations, thus changing the function 
represented by the Transformer.

Method of Action
● A Neural Network can be thought 

of as a function, f(x) → y.
● In a pre-trained Language model, 

we think of this function as the 
“Language Understanding” 
function.

● Methods like Adapters 
and Prefix-Tuning are adapted to 
new task by changing this function, 
f’(x) → y’.

● Prompt Tuning adapts to a new 
task by changing the input, while 
leaving the actual language 
understanding function alone 
f(x’) → y’.

● Currently unclear how important 
the difference between input only 
learned variables and in-network 
learned variables is.

(Houlsby et al., 2017)

● While some of the differences in methods seem trivial, there are larger 
conceptual distinctions at a higher level

● Adapters and Prefix Tuning actual overwrite representations inside of the 
model, this means they are overriding what the function does, not just what the 
function takes in

● In Prefix-Tuning overwriting, you don’t have guarantees that you aren’t 
destroying things the pre-trained model might do like storing summary 
information in the first token.

TODO: Update  add LR mention to this?



An Adapter, placed inside of of a 
Transformer layer, allows for a 
position-independent rewrite of 
activations, thus changing the function 
represented by the Transformer.

Contextual Prompts
● A Neural Network can be thought 

of as a function, f(x) → y.
● In a pre-trained Language model, 

we think of this function as the 
“Language Understanding” 
function.

● Methods like Adapters 
and Prefix-Tuning are adapted to 
new task by changing this function, 
f’(x) → y’.

● Prompt Tuning adapts to a new 
task by changing the input, while 
leaving the actual language 
understanding function alone 
f(x’) → y’.

● Currently unclear how important 
the difference between input only 
learned variables and in-network 
learned variables is.

(Houlsby et al., 2017)

● While some of the differences in methods seem trivial, there are larger 
conceptual distinctions at a higher level

● Adapters and Prefix Tuning actual overwrite representations inside of the 
model, this means they are overriding what the function does, not just what the 
function takes in

● In Prefix-Tuning overwriting, you don’t have guarantees that you aren’t 
destroying things the pre-trained model might do like storing summary 
information in the first token.

TODO: Update  add LR mention to this?



A Unified View
● How different is prompt/prefix 

tuning from adaptors?
● Adaptors are add a transformed 

representation to the original.
● Let’s look at prompts by how 

they change the result of 
attention

This reformulation comes from
(He et al., 2021)

This is my first time presenting this aspect so forgive the rough edges and rambling.



A Unified View



A Unified View



A Unified View
● How different is prompt/prefix 

tuning from adaptors?
● Adaptors are add a transformed 

representation to the original.
● Let’s look at prompts by how 

they change the result of 
attention

This reformulation comes from
(He et al., 2021)

● Prompt tuning as a gated addition to the result of attention.
○ They claim the second term doesn’t depend on the input, but the 

lambda part does, whatever.
○ The addition to attention not depending on the input is actually the 

weakness of this formulation.
● Their formulation doesn’t include positional information on the prompts, but 

that is often a fixed offset so that doesn’t matter much.



A Unified View
● This doesn’t account for 

the Prompt on the Query



A Unified View
● Default Attention: Select from Value based on the similarity of the Query 

and the Keys. 

● Query a learned knowledge store using this particular example.  

● Use a learned Query to select from this particular example. 

● A learned Query from a learned knowledge store, essentially a bias term.

Suggests more design choices to tweak. If P_q is learned at every layer, then 
Attn(P_q, K, V) would get overridden at each layer so only the last layer would matter. 
P_k/v at each layer but P_q only at the input layer. 

Different sized P_q and P_k/v

P_q especially important in Encoder/Decoder models?



A Unified View
● This doesn’t account for 

the Prompt on the Query



A Unified View
● This doesn’t account for 

the Prompt on the Query
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Prompt Tuning Results

Now the part you were all waiting for, does it work?



Prompt Tuning 
Results
Prompt Tuning performs very well on 
SuperGLUE (Wang et al., 2019).

Across all model sizes, Prompt Tuning is 
far ahead of Prompt Design.

As the model size grows, Prompt Tuning 
closes the gap with Model Tuning.

We see that Prompt Tuning is far stronger 
than prompt design for models of 
comparable sizes, and that as the size of 
the LM grows Prompt Tuning catches up 
to Model Tuning

● At a minimum expect it to do better than Prompt Design
● We see it lags behind Modal Tuning at smaller model sizes
● Interestingly, we close the gap as the model scales until we hit XXL where 

there is virtually no difference in performance

● All work was done with T5 1.1 plus 100k steps of LM adaptation.
● We generate the output label autoregressive (the model needs to actually 

generate the text) we don’t use rank classification. 
● We have two model-tuning baselines

○ Single Task model tuning 
○ the stronger Multi-Task model tuning.



Ablations:
Each plot is SuperGLUE score vs 
the number of parameters in the 
frozen model for “Something we 
ablated”.

● Prompt initialization
● Prompt length
● Pre-trained objective
● LM objective train time

As the scale of the frozen model 
grows, a lot of these design 
decisions matter a lot less.

So I’m throwing at lot of information at you, but it’s ok, all these graphs really highlight 
the same trend.

● They are SuperGLUE score vs # params in the frozen model, as we ablate 
something.

● They show that as you scale the frozen model, a lot of these decisions matter 
less.

Take the prompt length for example, as you scale the frozen model you see prompts 
as short of 5 giving the same performance as longer ones, even a prompt with 1 
token in it gives a respectable model.



Domain Shift - 
Duplicate 
DetectionGiven the reduced capacity of 
Prompt Tuning we hope it will reduce 
overfitting and enable stronger 
zero-shot performance.

We looked at zero-shot performance 
of two duplicate detection datasets in 
different domains.

● QQP :: Quora Question Pairs
● MRPC :: Microsoft Research 

Paraphrase Corpus

Prompt Tuning produces a strong model 
in zero-shot transfer from QQP to MRPC, 
MRPC to QPP is a mixed bag 

● Zero-shot setup:
○ Trained model/prompt on the training dataset (QQP or MRPC)
○ Selected the best checkpoint based on the development set for that 

training dataset (QQP or MRPC)
○ Evaluated that checkpoint on the other dataset (MRPC or QQP) 

development set
● Both are Duplicate Detection datasets:

○ MRPC is paraphrases from a newswire corpus
○ QQP is duplicate questions from the Quora website

■ Domain (newswire vs user generated content) shift
■ Questions only (QQP) vs all text (MRPC)



Domain Shift -
Question Answering
Given the reduced capacity of 
Prompt Tuning we hope it will reduce 
overfitting and enable stronger 
zero-shot performance.

We looked at zero-shot domain 
transform  in the context of question 
answering. We used the MRQA 2019 
shared task on generalization of 
question answering.

Prompt Tuning has stronger zero-shot 
performance on datasets with larger 
domain shifts, including a remarkable 
+12.5 for TextbookQA.

Prompt Tuning has stronger zero-shot 
performance on datasets with larger 
domain shifts, including a remarkable 
+12.5 for TextbookQA.

● We tested Prompt Tuning’s robustness to domain shift in the context of 
question answering:

● Used the MRQA 2019 shared task on QA generalization, multiple QA datasets 
all converted to extractive QA.

● Zero-shot setup:
○ Trained model/prompt on SQuAD
○ Selected the best checkpoint based on the SQuAD development set
○ Evaluated that checkpoint on the other datasets development sets

● Stronger zero-shot, especially when there are larger domain shifts
○ +12.5 for TextbookQA



Prompt Tuning 
Ensembles
Prompt Tuning allows for efficient 
ensembling of large models.

Instead of training (and storing) N copies of 
a large model, train N prompts which are 
much smaller.

Instead of performing N forward passes 
through N models, prompt tuning lets us 
replicate the input, prepend different 
prompts, and perform a single forward pass 
with a batch of size N.

● Prompt Tuning unlocks efficient ensembles for large models
● The same machinery that enable efficient multi-task serving
● Normally:

○ Train N models
○ Run and example though each of N models

■ Need O(N) compute/memory resources to run the ensemble in 
O(1) (embarrassingly parallel)

■ Need to run the ensemble in O(N) time (plus time to swap 
models in memory) to use O(1) compute

○ Compute the ensemble prediction
● Prompt Tuning:

○ Train N prompts (much storage requirements)
○ Replicate incoming example N times
○ Add each of the N prompts to one of the replicated inputs
○ Run an single batch of size N through the frozen model

■ O(1) compute/memory to store the model itself.
■ O(1) run time, modulo difference in batch of size 1 vs N 

○ Compute ensemble prediction

There is also the possibility of ensembling prompts by combining the actual prompt 
values.



Prompt Tuning 
Ensembles
Prompt Tuning allows for efficient 
ensembling of large models.

Instead of training (and storing) N copies of 
a large model, train N prompts which are 
much smaller.

Instead of performing N forward passes 
through N models, prompt tuning lets us 
replicate the input, prepend different 
prompts, and perform a single forward pass 
with a batch of size N.

Ensembling prompts produces stronger 
results.

Ensembling 5 XXL prompts using simple majority voting 
yields higher SuperGLUE scores than taking the best model 
in the ensemble. RTE and WSC are the only datasets where 
the ensemble is equivalent to the best model.

Ensembling has strong results than selecting the best model for each task from the 
ensemble on all datasets.
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Interpretability and 
Analysis



Interpretability - 
Nearest Neighbors
Our “soft prompts” are learned in embedding space, so 
we need to convert back to tokens. We use cosine 
distance to find the top-5 nearest neighbors to each 
token in the prompt.

We see strong semantic clusters in the top-5 
neighbors. Some are lexically similar but other more 
diverse.

The Wayward prompt paper (Khashabi et al., 2021) later 
showed, with regularization, you can control the 
nearest neighbors without large drops in accuracy.

We see class labels in neighbors of prompts. They 
persist in the “class-label” setting and are learned in the 
other initialization methods.

● Lexically Similar Clusters:
○ Technology
○ technology
○ Technologies
○ technological
○ technologies

● More Diverse Clusters:
○ entirely
○ completely
○ totally
○ altogether
○ 100%

● We convert our “soft-prompts” to text by finding the tokens whose embedded 
representation is closest to a prompt token based on cosine distance.

● Each prompt (size [T, H]) position gets N nearest neighbors
○ A prompt with 10 positions would result in 10 lists of 5 nearest 

neighbors
● Looking at the clusters:

○ Prompts are very “word-like”, even when not initialized from word 
embeddings.

○ Point out the clusters
○ A random point in the embedding space doesn’t tend to have these 

clusters, these clusters are more akin to adding noise to a pre-existing 
word

● Class labels are often nearest neighbors
○ The persist when using the class-label initialization.
○ They appear when using other initialization.

■ Class labels appear as NN for many prompt tokens. Possible 
that the model has trouble localizing the information to a single 
token. Because relative position information puts a lot of the 
prompts in the same, max distance, bucket from a lot of the 
input? Because of Dropout which is applied to the prompt?

● Definitely reading the tea leaves, but many words like “science”, “engineering”, 
“technology” in the BoolQ prompt, that dataset has ~20% of questions in the 
“Nature/Science” category. The prompt could be used to prime the model to 
think in a specific context?



Analysis -
Prompt Discretization

● Turn prompts into the embedding 
of their nearest neighbors

● Use that as the prompt
● Use that for generation (all zeros?)
● Use that for rank classification?



Analysis -
Attention Masking
Within your encoder, you can using 
attention masking to decide what tokens 
are allowed to attend to other tokens.

If Prompt Tokens are not allowed to 
attend to text tokens, your prompt 
activations will be consistent across a 
dataset.

We found little difference between 
several different attention masks for 
simple tasks but full visibility was the 
best, Zhang et al., (2021) show similar 
results.

● It seems natural that text input should attend to the prompt variables (easiest 
way for the prompt to influence the computation), but does it make sense for 
the prompt to attend to the text tokens?

○ You prompt representation becomes dependent on your input. 
Is this good? Or should the prompt representation through the 
model remain consistent across all examples in a dataset?

● Zhang, et al., 2021 attention masking removes Attn(P_q, K, V) and 
shows large performance losses.

● This is very related to our talk about what prompts on different parts of the 
input do. Masking the attention is similar to not having that prompt.

Image from CPM-2: Large-scale Cost-effective Pre-trained Language Models 
(https://arxiv.org/abs/2106.10715)

https://arxiv.org/abs/2106.10715


Analysis -
Bag of Prompts?
We found that post-hoc changes to the 
order of the prompt tokens has varying 
effect.

● Complete reverse of the prompt 
gave the largest performance 
drop, ~20 point drop on SST2

● Shuffling of the prompt gave 
much smaller drops, between 5 
and 10 points.

Suggests that the prompts are more of 
a bag and the exact order is not that 
critical.

● Part of this may come from the fact t5 uses relative attention and the max 
bucket length is 128, some prompts are 100 tokens long meaning the majority 
of the input will see the front section of the prompt as all the same distance 
away.



Analysis -
Prompt Norms
We have observed that the norms of the 
learned soft prompts are often much 
higher than the norms of the frozen 
embeddings

Large norms may be required to 
overcome natural biases in the decoder 
and control output generation.

● An artifact of Cross Entropy Loss 
training where the objective 
forces the gold label to be the 
most probable generation of all, 
not just the most probable of the 
outputs we care about.

Type Mean Norm Std Dev

Embedding 297.35

Cross-Entropy
Prompt

1600.16 89.85

Perceptron
Prompt

299.08 24.37

● The norms of the learned prompt tokens are often much higher than the 
embedded words.

● We think this may have to do with the prompts needing to make large changes 
in attention scores.

● We think this may be because of training with the token-level cross-entropy 
loss.

○ This makes us want to control the model output, not just rank the gold 
class above others (this second approach only works on datasets with 
known label outputs).

○ When we train using a ranking loss (Perceptron in this case) we see 
much smaller norms.

■ When training like this we don’t have to worry about what the 
model actually outputs.



Analysis -
Prompt Removal
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FLAN (Wei et al., 2022) and
Large DecoderOnly 
Prompt Tuning

● Accepted to ICLR 2022
● Google AI Blog Post

The next part of my work revolved around using prompt tuning with large decoder 
only language models.

FLAN was accepted to ICLR 2022!

https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html


Collaborators

   Jason Wei             Maarten Bosma         Vincent Y Zhao            Kelvin Guu            Adams Wei Yu

   Me Lol                        Nan Du              Andrew M. Dai               Quoc V. Le

Jason Wei is also an AI Resident



FLAN

Can we train a model to be better in the 
prompt-design-based 
zero-shot/in-context-few-shot 
setting?

Fine-tuning a model with “instructions” 
helps it learn to understand new 
instructions later.

Similar to T0 (Sanh et al., 2021), MetaICL (Min 
et al., 2021) and Ouyang et al. (2022).

● Our base model is a 137B parameter dense transformer based language 
model, trained on a mix of web, code, and conversational data.

● Few/Zero-Shot performance “just fell out” of GPT-3, it happened to work, 
especially for tasks that could essentially be rewritten as LM completion

● Can we steer the model to be good at this instead of just hoping?



FLAN -
Power of Scale
As we scale a model, we expect it to 
improve.

Here we see testing on the tasks we use 
in training continues to go up with scale.

● As expected, larger models do better
● The untuned models have a slight dip when it hits larger scales because these 

datasets are not super aligned to LM modeling so they tend to have a lot of 
variance.



FLAN -
Power of Scale
When looking at held-out tasks, we see 
that there is essentially a scale threshold 
required for generalization.

Models need enough capacity before they 
can generalize to unseen tasks.

● Echoing our findings in “The Power of Scale for Parameter-Efficient Prompt 
Tuning” there is a scale threshold for generalization of strong Few/Zero-Shot 
performance on held out tasks.



FLAN -
Prompt Tuning

Prompt Tuning with LaMDA (Thoppilan et al, 2022), a 
Large Decoder-Only Transformer.

● In terms of both absolute parameter count 
(137B), and depth (64 layers).

Instruction Tuning boosts prompt tuning 
performance in both the low-resource and 
full-dataset regimes.

Low-resource prompt tuning outperforms the mean, 
and often max, performance of zero-shot inference

● Prompt Tuning as part of the FLAN paper was out first chance to try it in the 
context of a DecoderOnly LM, all work with T5 uses EncoderDecoder models 
where the prompt was on the Encoder.

○ This was also the first time we used Rank Classification, where the 
Language Model scores over set of possible labels are calculated and 
used instead of actually generating a label.

● The FLAN instruction tuning procedure creates a stronger NLP model in 
addition to allowing it to deal with Instruction formatted inputs.

● Low-Resource Prompt Tuning with the FLAN model outperforms the mean, 
and often max, performance of the Zero-Shot and Multi-Shot FLAN models, 
even when using non-optimal (the GPT-3 style) input formatting.



Input Patterns and 
Prompt Tuning
Prompt tuning in FLAN used a constant input 
format (GPT-3 style) across checkpoints.

● Lose the advantage of the “instruction” 
formatting FLAN is trained with.

Pilot experiments began to show that using 
FLAN formatting did have an effect on 
downstream performance, especially in the 
few-shot setting.

● Results corroborated in Gu et al. (2021)

The exact formatting of input and output 
can have large effects on final performance 
in the few-shot setting.

● FLAN comparison used the LM-focused GPT-3 style prompts, even though 
FLAN was tuned with a more “instruction” focused prompts. How does this 
effect results? We saw that the learnable nature of Prompt Tuning does make 
up for a lot of this, but it could still be leaving some performance on the floor.

● Similar to results from combining Prompt Design and Fine Tuning (Schick and 

Schütze, 2021; Le Scao and Rush, 2021; Webson and Pavlick, 2021) where the input formatting can 
help learnability.
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SPoT: Soft Prompt Transfer (Vu et al., 2021)

● Accepted to ACL 2022

Now some work on increasing the performance of Prompt Tuning and some 
interesting applications you can do with it.

Accepted to ACL 2022



Collaborators

Tu Vu           Me lol Noah Constant       Rami Al-Rfou    Daniel Cer



Motivation - 
MultiTask Learning
We have seen in models like T5, FLAN, and in 
the literature that MultiTask training can really 
help performance.

We see this in our own experiments too.

How can we apply this to Prompt Tuning?

MultiTask Model tuning out performs Single 
Task Model Tuning.

● We have seen that multi-task training or multi-task pretraining can help boost 
model performance.

○ We even see that in our original baselines with Model Tuning
● How can we use this for prompt tuning?

○ Especially when the limited capacity of the prompt makes putting 
multiple tasks in the prompt hard.



Motivation - 
Initialization
The learning curves for Prompt Tuning often 
have steep jumps followed by long plateaus.

Suggests poor initialization.

What is “Large Language Model Pre-Training” 
if not better initialization?

Prompt Tuning training can have 3 phases:
1) No meaningful model outputs.
2) The model has learned to restrict the 

logits to valid tokens in the 
vocabulary

3) The model learns the task

● Often when training prompts you can end up with a bit of unhealthy looking 
learning curves.

○ You start with the prompt being unable to control the model output at 
all, it outputs junk or nothing.

○ Then it jumps to restricting the model outputs to just the valid 
classes—generally, the most common label.

○ Then it jumps to solving the task, with slow growth after that.
○ This is especially common with randomly initialized prompts.

● One of our collaborators (Dan) mentioned this is a bit like learning curves from 
the 80s, when we didn’t know how to initialize models well.

○ Suggests poor prompt Initialization 
■ Pre-training is at it core better initialization.



SPoT Motivation -
MultiTask Learning

SPoT Motivation -
Initialization

● We have seen that multi-task training or multi-task pretraining can help boost 
model performance.

○ We even see that in our original baselines with Model Tuning
● How can we use this for prompt tuning?

○ Especially when the limited capacity of the prompt makes putting 
multiple tasks in the prompt hard.

● Often when training prompts you can end up with a bit of unhealthy looking 
learning curves.

○ You start with the prompt being unable to control the model output at 
all, it outputs junk or nothing.

○ Then it jumps to restricting the model outputs to just the valid 
classes—generally, the most common label.

○ Then it jumps to solving the task, with slow growth after that.
○ This is especially common with randomly initialized prompts.

● One of our collaborators (Dan) mentioned this is a bit like learning curves from 
the 80s, when we didn’t know how to initialize models well.

○ Suggests poor prompt Initialization 
■ Pre-training is at it core better initialization.



SPoT: Transfer Via 
Initialization
The capacity of a prompt is too small to 
expect top performance on a single task when 
training on multiple tasks.

Instead, we initialize our prompt with a 
prompt trained on a multi-task mixture.

● Starting with the prompt that knows 
how to control the downstream model.

● Starting with any information from the 
multi-task mixture that may help our 
target task.

We can use prompt that is trained on a 
mixture of tasks as the initialization for our 
real task.

● SPoT: Soft Prompt Transfer via Initialization.
● General/Manually targeted Pretraining:

○ Train a Prompt on a large mixture of tasks.
○ Use that prompt as the initialization for our target task.
○ Experimentally find mixtures that work well.



SPoT: Transfer Via 
Initialization
We no longer need scale to rival Model 
Tuning.

Trained a Prompt on a Mixture of all the GLUE 
(Wang et al., 2018) tasks

Then trained individual prompts for each 
SuperGLUE task.

● Each prompt is initialized with the GLUE 
mixture prompt at the start of training.

A large increase (1.1 points) in performance 
when using the XXL model.

SPoT transfer increases model 
performance across sizes until it is 
competitive with Model Tuning with smaller 
models and much stronger at size XXL.

● For strong SuperGLUE performance we transferred a prompt from GLUE.
● We trained one Prompt on a mixture of GLUE tasks.
● We then trained a new prompt for each SuperGLUE task

○ Initialized with the GLUE multi-task prompt.
● We catch up to Model Tuning at smaller model scales.
● There is a large performance gain at the XXL size.



SPoT: SuperGLUE

Only parameter efficient method that is near 
fine-tuning performance.

Spot tunes 409.6K parameters per task on top of the 
11B frozen T5 backbone.

● T5 tunes 11B parameters per task
● That is 0.0037% of the parameters
● This is not using prompt ensembles

● SPoT gave a really strong SuperGLUE performance
● We are only .1 points behind T5 with model tuning.
● This is really a whole different ball game when it comes to parameter 

efficiency (0.0037%)
○ Many other methods that are “parameter-efficient” add around 3% of 

parameters.
○ Again, 3% of the parameters for T5-XXL is basically a whole 

BERT-Large (330M vs 340M).



SPoT: Results
We no longer need scale to rival Model 
Tuning.

Only parameter efficient method that is near 
fine-tuning performance.

● Spot tunes 409.6K parameters per 
task on top of the 11B frozen 
backbone

● That is 0.0037% of the parameters
● This is not using prompt ensembles

● For strong SuperGLUE performance we transferred a prompt from GLUE.
● We trained one Prompt on a mixture of GLUE tasks.
● We then trained a new prompt for each SuperGLUE task

○ Initialized with the GLUE multi-task prompt.
● We catch up to Model Tuning at smaller model scales.
● There is a large performance gain at the XXL size.

● SPoT gave a really strong SuperGLUE performance
● We are only .1 points behind T5 with model tuning.
● This is really a whole different ball game when it comes to parameter 

efficiency (0.0037%)
○ Many other methods that are “parameter-efficient” add around 3% of 

parameters.
○ Again, 3% of the parameters for T5-XXL is basically a whole 

BERT-Large (330M vs 340M).



SPoT:
Targeted Transfer via 
Prompt Similarity
A model is some location in a parameter 
space that solves some task

We expect models that are close in that space 
solve similar tasks.

● Large models like t5 are hard to 
compare.

Prompts have already shown “word-like” 
behavior.

● Prompt Similarity can be a proxy for 
what prompts solve similar tasks, and 
therefore which tasks are similar.

Prompt Similarity shows reasonable task 
clusters. Clusters seem to be more related 
to task than domain as QNLI is very 
dissimilar to SQuAD, despite them being 
built on the same dataset.

CxC and STS-B are actually the same task, collected with the same method, 
by our collaborator Daniel Cer. The model found the cofounder of Dan



SPoT:
Targeted Transfer via 
Prompt Similarity

1. Build a bank of Source tasks
● We found having “Key” and 

“Value” versions of the prompts 
worked best.

● “Keys” are prompts trained for 
only a few thousand steps.

● “Values” are prompts are the 
prompts the performed best on 
the dev set.

2. Train a “query” prompt on your target 
task.

3. Find the best source task via query and 
key similarity.

4. Initialize with that source task’s value 
and train on the target task.

Instead of empirically finding which tasks 
transfer the best to other tasks, we can use 
the similarity between prompts to select the 
task to use as an initialization point.



SPoT:
Targeted Transfer via 
Prompt Similarity
Trained 16 source tasks (3 different prompts with 
different seeds) and trained 10 target tasks 
prompts

Selected the top-K source tasks based on prompt 
similarity

Trained on the target task, initialized with one of 
the top-K source prompts.

Results:
● Training with only the top-3 tasks, we 

already recover over half of the oracle 
performance

● K=15 recovers almost all of the 
performance
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Continuing Work and 
Related papers

● Multilingual and Zero-Shot cross-lingual performance and 
separation of task and language prompt parameters. 
(Zhao and Schütze, 2021)

● Transfer of prompts between models. (Su et al., 2021)
● Generation of prompts with other models. (Gao et al., 2021)
● Application of Prompt Tuning to larger models. 
● Interpretation of prompts
● Composability of prompts

Some examples of the current projects we are working on. I’ve also included a few 
related papers where if you read that one and then thing “prompt tuning” you should 
be able to get a clear idea of what we are doing.

● Using mT5, and tasks where you train in one language and then apply the 
model to the same task in a different language.

● Can you use a previous prompt as a starting point when you refresh a model, 
or move them between different sizes.

● Can you generate a real-valued prompt from a snapshot of a dataset and can 
that generalize to new datasets.

● Bigger is Better?
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Thank You
Brian Lester

Open Source Implementation: https://github.com/google-research/prompt-tuning

@blester125
https://blester125.com

Google AI Resident

Thanks for your time, hopefully this was either interesting or you got a good nap in.

We have open-sourced our implementation, it includes instructions to get running on 
Google Cloud with TPU training to enable really big models. We have also been 
adding it. For example, we added the ability to control the nearest neighbors of the 
prompt tokens like in the Wayward Prompts (Khashabi et al., 2021) paper.

If think prompt tuning is a cool idea hit me up on twitter. If you think the whole thing is 
stupid and just want to yell at me about how dumb it is, feel free to reach out too. 

https://github.com/google-research/prompt-tuning
https://blester125.com

