
Brian Lester, Rami Al-Rfou, Noah Constant

Presented by: Brian Lester @ UNC 2022/01/21

Prompt Tuning

● This presentation is essentially “prompt tuning and such”, it covers our EMNLP
2021 paper, our own follow ups, and insights gleaned from others work in the
space.

● There is a lot to cover so we’ll probably stay at the concept level but I’m happy
to dive into details during questions.

01

Background:
NLP

I know there is a large mix in the audience, all working on different things, so I’m
going to start with a quick crash course in NLP, touching on just the building blocks
you’ll need for prompt tuning

Words to Numbers
1. Tokenize

○ Split a string of text
into tokens

○ Some techniques will
split words too

2. Intergerize
○ Convert tokens to

integers via a
vocabulary

3. Embed
○ Turn an integer into a

vector by looking it up
in a table

○ This is generally the
first layer of a network

Input: "I really hated that movie!"

Tokenized:
 ['▁I', '▁really', '▁hate', 'd', '▁that', '▁movie', '!']

Integerized:
[27, 310, 5591, 26, 24, 1974, 55]

Embedded:
[[8.0000000e+00 -6.7500000e+00 1.5078125e+00 ... -3.5156250e+00, 2.8437500e+00 2.7000000e+01]
 [7.7812500e+00 -3.0625000e+00 1.2687500e+01 ... -1.2812500e+01, 1.3812500e+01 2.6625000e+01]
 [1.4625000e+01 -4.6157837e-04 -2.4625000e+01 ... 6.1875000e+00, 1.2750000e+01 5.2187500e+00]
 ...
 [8.3750000e+00 -6.6796875e-01 -1.5703125e+00 ... -6.1250000e+00, 7.5000000e+00 3.8250000e+01]
 [2.1250000e+01 -8.0625000e+00 3.4179688e-01 ... 2.5500000e+01, 1.0250000e+01 4.0000000e+00]
 [-1.3687500e+01 7.6562500e+00 -1.9750000e+01 ... 9.1875000e+00, 5.2187500e+00 5.7250000e+01]]

Embedded Shape: (7, 512)

● We have text, we can’t just shove that into a model, we need to represent it
somehow

● We can’t create a unique representation from a whole string, there are too
many possibilities, need to compose smaller representations

● Split the text into individual tokens that we can have representations for.
○ Some split them based on linguistics, into what we think of as words
○ Others split based on the distribution of training text, often creating

subword tokens with division that don’t necessarily follow human
intuition

● Then we convert each string into integers, this just makes it easier to work
with.

● We “embed” each token, that is, look up it’s representation based on it’s
integer value.

○ Gives us a vector for each token
○ Our sentence is now a [Seq-Len, Embed-Size] matrix

■ This representation of a sentence is important to remember
○ Embedding is generally the first layer of a network and trained with it.

Transformers
An attention model for processings sets
of input.

● Attention is a method to
re-contextualize the
representation of a token as a
mixture of the representations of
the other tokens.

● Attention allows for long distance
dependencies with short
computational paths

● The parallel nature allows for
efficient scaling to huge models
and dataset sizes.

● Includes position information for
sequence processing.

● Transformers are the current star of NLP.
● They allow use to recontextualized a token based on the rest of the input with

attention.
● Attention allows long range dependencies with constant (O(1)) computation,

regardless of distance between works.
● Highly parallel allowing for pre-training on massive datasets.
● Attention works on sets, we encode positional information in the tokens to

enable sequence processing.

Language Model
Pre-Training
There are lots of relationships in some
input space that can be helpful, but can’t
effectively be learned from the dataset
you actually care about.

First train a model on a larger datasets so
it can learn those associations before you
train it on your real dataset.

For NLP, we often create this task from
raw text. For example, predicting the next
word, or recovering spans of text that we
hid from the input.

● Relations between words, tenses (a dog and a cat are both similar pets, etc)
can be helpful in downstream tasks, but maybe can’t be inferred from your
dataset because it is too small.

● Training on a larger dataset first, called transfer learning, common in many
areas, for example starting with a model trained on Image Net in CV of
finetuning BERT in NLP

● LM objective, span corruption, MLM

Image from BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (https://arxiv.org/abs/1810.04805)

https://arxiv.org/abs/1810.04805

01

Background:
Fine Tuning

● I’m sure a lot of you will know most of the information in this section but it’s
useful for setting the stage for the motivation for a lot of this work

● We are going to talk a little bit about how we use large pre-trained language
models in NLP.

Fine Tuning
Given:

● A pretrained model
● A labeled dataset

Update weights of pretrained model by
supervised learning on labeled dataset.

Strong performance on many tasks.
Starting point of most SotA methods
today.

● GPT (Radford et al., 2018)
● BERT (Devlin et al., 2019)
● T5 (Raffel et al., 2020)

● Fine Tuning a large pre-trained model is the defacto approach for strong
performance in NLP

● There really is nothing “fine” about fine-tuning, you update all the parameters,
that’s hitting it will a pretty big hammer. We highlight this by calling it model
tuning in the paper.

● Lots of famous examples like BERT or T5

Image from BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (https://arxiv.org/abs/1810.04805)

https://arxiv.org/abs/1810.04805

Fine Tuning
Some sharp edges:

● Each model you train is a fork.

● These models are so big even
fine-tuning often takes complex
SPMD programming and large
compute platform.

● Serving can be difficult
○ A model has to be served

for each task.
○ Need enough requests to

keep model saturated.
○ Swapping models into

memory can take a long
time.

Issues with Fine Tuning:
● Dealing with so many copies of the same huge model

○ Disk space is cheap, but some models, like LaMDA (Thoppilan et al., 2022),
takes almost 500 GB on disk

● Even Fine-tuning needs parallel computation.
○ With BERT, the hard part was the pre-training, it was, mostly,

reasonable to finetune BERT on a consumer GPU
● Complicates serving, explained later.

01

Background:
Prompt Design

Another piece of background is the idea of Prompt Design

Prompt Design
Can we add text to our model to trick a language model
into doing what we want?

● Knowledge Extraction from LMs (Petroni et al., 2019)

● GPT-3 (Brown et al., 2020)

We don’t have to copy our model but there are still
problems:

● Human effort to get prompts
● Prompts are specific to models
● Limit to the number of supervised examples

you can fit in the input, often balloons the
sequence length, increasing latency.

● Poor performance
○ Mitigated by fine-tuning the model

 (Schick and Schütze, 2021; Le Scao and Rush, 2021;
 Webson and Pavlick, 2021)

○ Searching for the best text prompts
(Jiang et al., 2020; Shin et al., 2020)

● Can we trick our model without needing to update it?
● Introduced in the Knowledge extraction from LMs literature

○ Popularized, especially for supervised tasks, by GPT-3
● Explain format here

○ More like import formatting, adding task descriptions before an input,
question marks after, etc.

○ Can include supervised examples, people generally refer to this as
few-shot or in-context learning

● Pros
○ You don’t need to fork your model so you can optimize its serving really

well
○ Text prompts feel very interpretable

● Cons
○ You need human designed prompts (search in text space is hard), art

not science
○ You need to repeat this human search when the underlying model

changes
○ You can only fit a few supervised examples in the model’s context,

especially for things like reading comprehension with long inputs.
■ This can also increase latency as you have to process longer

sequences.
○ Poor Performance

■ GPT-3 175B does 5 points worse on super glue than T5 Base
which has 0.1% of the parameters

■ Fine-tuning means you have to copy the model again
■ Searching in the text space is hard

Image from Language Models are Few-Shot Learners
(https://arxiv.org/abs/2005.14165)

https://arxiv.org/abs/2005.14165

02

Our Approach:
Prompt Tuning (Lester et al., 2021)

● Accepted to EMNLP 2021
● Google AI Blog Post

Our approach, Prompt Tuning, splits the difference.

EMNLP 2021

https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html

Prompt Tuning
Prepend virtual tokens to input.

Prompt and input representations flow through
model like normal.

Learn embeddings of only these special
tokens, via backprop. Keep rest of model fixed.

Advantages:
● Lets us use whole training dataset.
● Lets us automatically learn a new prompt

for a new model.
● Lets us keep the model frozen.
● Prompts are much smaller.

Pre-trained Model
❄ Frozen ❄

�� �� ��

Input TextTunable Soft Prompt

● Prompt Tuning works like this
○ We essentially have a sequence of virtual tokens.
○ These are embedded with a new embedding table.
○ We prepend this to the normal embedded input sequence.
○ We run the model forward pass (with this new longer sequence) to get

a loss.
○ We run the model backward pass to get gradients.
○ We only apply the gradient updates to the new embedding table, the

main model is kept fixed.

Prompt Design can be thought of as searching in the text space over tokens with fixed
embeddings
Prompt Tuning can be thought of as searching in the embedding space with a fixed
text prompt.

● It has advantages
○ We aren’t limited by the number of examples we can fit into the models

context, we can learn from a whole dataset.
■ We also don’t have as long of a sequence length so we have

faster inference
○ We can automatically learn prompts for any model or dataset, it is just

backprop, we have been doing that for years.
■ We don’t have manual search for prompts on each model.

○ The main model is frozen so we only have to save the very small

○ prompts to disk.

Prompt Tuning

● The main model being frozen gives gives a lot of advantages when serving a
model.

● Model Tuning:
○ Each task needs to own model, and that model needs to live in

memory
■ You need enough requests to saturate the model to justify it

living in memory
■ You need to swap it into memory, slow because so big
■ Either run in O(N) + swap time or O(1) with massive compute

resources.
○ Each input only goes to the task model, smaller batches

● Prompt Tuning:
○ Each task is a prompt, much smaller
○ Only need to serve one copy of the frozen model
○ Prompts for various tasks can be applied to different inputs

■ A single, larger mixed task batch of size N
● We have an internal server prototype at the moment where we can pass the

input text and a prompt to running model, allowing for a multi-tasking with a
single model server.

Prompt Tuning

Pre-trained Model
🔥 Tunable 🔥

Pre-trained Model
❄ Frozen ❄

Pre-trained Model
❄ Frozen ❄

Model Tuning
(a.k.a. “Fine-Tuning”)

Prompt Tuning
(Ours)

Prompt Design
(e.g. GPT-3)

Input Text Input TextTunable Soft
Prompt

Input TextEngineered
Prompt

Strong Task Performance
Efficient Multitask Serving

This diagram reinforces some of the core differences between various approaches.

● Model Tuning gives strong performance but need to fork the model
● Prompt Design can do multitask serving with a single model but has poor

performance
● Prompt Tuning has the best of both with strong performance and a frozen

core.

Prompt Tuning has the smallest
parameter count compared to other
approaches that focus on learning a
continuous representation of prompt
tokens.

Related Work

While we were working on this project a
few other papers doing similar work
appeared on arXiv

● Li and Liang (2021)
● Hambardzumyan et al. (2021)
● Liu et al. (2021a)
● Qin and Eisner (2021)
● Zhong et al. (2021)
● Logeswaran et al. (2020)

A recent survey paper does a good job of
going over a lot of these approaches.

● Liu et al. (2021b)

● While we were working on this, other paper came out :(
● Graph shows the number of updatable parameters each method requires

based on if it was applied to T5
● Prompt Tuning is the most parameter efficient method

○ This is because our approach is the simplest, removing things like
per-layer variables from while other methods needed.

○ Some methods like adapters (Houlsby, et al., 2019) applied to t5 would
result in add about as many parameters as BERT-Large.

● There is more detail about these other methods in our paper and in this
Survey from Liu (different Liu) et al. at CMU, and I encourage you to checkout
these other works.

This graph shows the number of task specific (updatable parameters) several
different similar works use. Each band represents the mean and stddev of the
parameter count as you vary the prompt length from 1 to 100 with T5 as the base
model.

Note: The WARP line if offset because they are an Encoder Only architecture.

In addition to being the most parameter efficient, our method is the simplest of all
these approaches. It doesn’t have:

● Variables at every layer
● Text and Learned Prompts woven throughout the text

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00121
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2104.06599
https://doi.org/10.18653/v1/2021.naacl-main.398
https://arxiv.org/abs/2012.09543
http://arxiv.org/abs/2107.13586

● Updates to the prompt and the model
● Updates to the text itself
● Trainable output layer

An Adapter, placed inside of of a
Transformer layer, allows for a
position-independent rewrite of
activations, thus changing the function
represented by the Transformer.

Method of Action
● A Neural Network can be thought

of as a function, f(x) → y.
● In a pre-trained Language model,

we think of this function as the
“Language Understanding”
function.

● Methods like Adapters
and Prefix-Tuning are adapted to
new task by changing this function,
f’(x) → y’.

● Prompt Tuning adapts to a new
task by changing the input, while
leaving the actual language
understanding function alone
f(x’) → y’.

● Currently unclear how important
the difference between input only
learned variables and in-network
learned variables is.

(Houlsby et al., 2017)

● While some of the differences in methods seem trivial, there are larger
conceptual distinctions at a higher level

● Adapters and Prefix Tuning actual overwrite representations inside of the
model, this means they are overriding what the function does, not just what the
function takes in

● In Prefix-Tuning overwriting, you don’t have guarantees that you aren’t
destroying things the pre-trained model might do like storing summary
information in the first token.

TODO: Update add LR mention to this?

An Adapter, placed inside of of a
Transformer layer, allows for a
position-independent rewrite of
activations, thus changing the function
represented by the Transformer.

Contextual Prompts
● A Neural Network can be thought

of as a function, f(x) → y.
● In a pre-trained Language model,

we think of this function as the
“Language Understanding”
function.

● Methods like Adapters
and Prefix-Tuning are adapted to
new task by changing this function,
f’(x) → y’.

● Prompt Tuning adapts to a new
task by changing the input, while
leaving the actual language
understanding function alone
f(x’) → y’.

● Currently unclear how important
the difference between input only
learned variables and in-network
learned variables is.

(Houlsby et al., 2017)

● While some of the differences in methods seem trivial, there are larger
conceptual distinctions at a higher level

● Adapters and Prefix Tuning actual overwrite representations inside of the
model, this means they are overriding what the function does, not just what the
function takes in

● In Prefix-Tuning overwriting, you don’t have guarantees that you aren’t
destroying things the pre-trained model might do like storing summary
information in the first token.

TODO: Update add LR mention to this?

A Unified View
● How different is prompt/prefix

tuning from adaptors?
● Adaptors are add a transformed

representation to the original.
● Let’s look at prompts by how

they change the result of
attention

This reformulation comes from
(He et al., 2021)

This is my first time presenting this aspect so forgive the rough edges and rambling.

A Unified View

A Unified View

A Unified View
● How different is prompt/prefix

tuning from adaptors?
● Adaptors are add a transformed

representation to the original.
● Let’s look at prompts by how

they change the result of
attention

This reformulation comes from
(He et al., 2021)

● Prompt tuning as a gated addition to the result of attention.
○ They claim the second term doesn’t depend on the input, but the

lambda part does, whatever.
○ The addition to attention not depending on the input is actually the

weakness of this formulation.
● Their formulation doesn’t include positional information on the prompts, but

that is often a fixed offset so that doesn’t matter much.

A Unified View
● This doesn’t account for

the Prompt on the Query

A Unified View
● Default Attention: Select from Value based on the similarity of the Query

and the Keys.

● Query a learned knowledge store using this particular example.

● Use a learned Query to select from this particular example.

● A learned Query from a learned knowledge store, essentially a bias term.

Suggests more design choices to tweak. If P_q is learned at every layer, then
Attn(P_q, K, V) would get overridden at each layer so only the last layer would matter.
P_k/v at each layer but P_q only at the input layer.

Different sized P_q and P_k/v

P_q especially important in Encoder/Decoder models?

A Unified View
● This doesn’t account for

the Prompt on the Query

A Unified View
● This doesn’t account for

the Prompt on the Query

03

Prompt Tuning Results

Now the part you were all waiting for, does it work?

Prompt Tuning
Results
Prompt Tuning performs very well on
SuperGLUE (Wang et al., 2019).

Across all model sizes, Prompt Tuning is
far ahead of Prompt Design.

As the model size grows, Prompt Tuning
closes the gap with Model Tuning.

We see that Prompt Tuning is far stronger
than prompt design for models of
comparable sizes, and that as the size of
the LM grows Prompt Tuning catches up
to Model Tuning

● At a minimum expect it to do better than Prompt Design
● We see it lags behind Modal Tuning at smaller model sizes
● Interestingly, we close the gap as the model scales until we hit XXL where

there is virtually no difference in performance

● All work was done with T5 1.1 plus 100k steps of LM adaptation.
● We generate the output label autoregressive (the model needs to actually

generate the text) we don’t use rank classification.
● We have two model-tuning baselines

○ Single Task model tuning
○ the stronger Multi-Task model tuning.

Ablations:
Each plot is SuperGLUE score vs
the number of parameters in the
frozen model for “Something we
ablated”.

● Prompt initialization
● Prompt length
● Pre-trained objective
● LM objective train time

As the scale of the frozen model
grows, a lot of these design
decisions matter a lot less.

So I’m throwing at lot of information at you, but it’s ok, all these graphs really highlight
the same trend.

● They are SuperGLUE score vs # params in the frozen model, as we ablate
something.

● They show that as you scale the frozen model, a lot of these decisions matter
less.

Take the prompt length for example, as you scale the frozen model you see prompts
as short of 5 giving the same performance as longer ones, even a prompt with 1
token in it gives a respectable model.

Domain Shift -
Duplicate
DetectionGiven the reduced capacity of
Prompt Tuning we hope it will reduce
overfitting and enable stronger
zero-shot performance.

We looked at zero-shot performance
of two duplicate detection datasets in
different domains.

● QQP :: Quora Question Pairs
● MRPC :: Microsoft Research

Paraphrase Corpus

Prompt Tuning produces a strong model
in zero-shot transfer from QQP to MRPC,
MRPC to QPP is a mixed bag

● Zero-shot setup:
○ Trained model/prompt on the training dataset (QQP or MRPC)
○ Selected the best checkpoint based on the development set for that

training dataset (QQP or MRPC)
○ Evaluated that checkpoint on the other dataset (MRPC or QQP)

development set
● Both are Duplicate Detection datasets:

○ MRPC is paraphrases from a newswire corpus
○ QQP is duplicate questions from the Quora website

■ Domain (newswire vs user generated content) shift
■ Questions only (QQP) vs all text (MRPC)

Domain Shift -
Question Answering
Given the reduced capacity of
Prompt Tuning we hope it will reduce
overfitting and enable stronger
zero-shot performance.

We looked at zero-shot domain
transform in the context of question
answering. We used the MRQA 2019
shared task on generalization of
question answering.

Prompt Tuning has stronger zero-shot
performance on datasets with larger
domain shifts, including a remarkable
+12.5 for TextbookQA.

Prompt Tuning has stronger zero-shot
performance on datasets with larger
domain shifts, including a remarkable
+12.5 for TextbookQA.

● We tested Prompt Tuning’s robustness to domain shift in the context of
question answering:

● Used the MRQA 2019 shared task on QA generalization, multiple QA datasets
all converted to extractive QA.

● Zero-shot setup:
○ Trained model/prompt on SQuAD
○ Selected the best checkpoint based on the SQuAD development set
○ Evaluated that checkpoint on the other datasets development sets

● Stronger zero-shot, especially when there are larger domain shifts
○ +12.5 for TextbookQA

Prompt Tuning
Ensembles
Prompt Tuning allows for efficient
ensembling of large models.

Instead of training (and storing) N copies of
a large model, train N prompts which are
much smaller.

Instead of performing N forward passes
through N models, prompt tuning lets us
replicate the input, prepend different
prompts, and perform a single forward pass
with a batch of size N.

● Prompt Tuning unlocks efficient ensembles for large models
● The same machinery that enable efficient multi-task serving
● Normally:

○ Train N models
○ Run and example though each of N models

■ Need O(N) compute/memory resources to run the ensemble in
O(1) (embarrassingly parallel)

■ Need to run the ensemble in O(N) time (plus time to swap
models in memory) to use O(1) compute

○ Compute the ensemble prediction
● Prompt Tuning:

○ Train N prompts (much storage requirements)
○ Replicate incoming example N times
○ Add each of the N prompts to one of the replicated inputs
○ Run an single batch of size N through the frozen model

■ O(1) compute/memory to store the model itself.
■ O(1) run time, modulo difference in batch of size 1 vs N

○ Compute ensemble prediction

There is also the possibility of ensembling prompts by combining the actual prompt
values.

Prompt Tuning
Ensembles
Prompt Tuning allows for efficient
ensembling of large models.

Instead of training (and storing) N copies of
a large model, train N prompts which are
much smaller.

Instead of performing N forward passes
through N models, prompt tuning lets us
replicate the input, prepend different
prompts, and perform a single forward pass
with a batch of size N.

Ensembling prompts produces stronger
results.

Ensembling 5 XXL prompts using simple majority voting
yields higher SuperGLUE scores than taking the best model
in the ensemble. RTE and WSC are the only datasets where
the ensemble is equivalent to the best model.

Ensembling has strong results than selecting the best model for each task from the
ensemble on all datasets.

04

Interpretability and
Analysis

Interpretability -
Nearest Neighbors
Our “soft prompts” are learned in embedding space, so
we need to convert back to tokens. We use cosine
distance to find the top-5 nearest neighbors to each
token in the prompt.

We see strong semantic clusters in the top-5
neighbors. Some are lexically similar but other more
diverse.

The Wayward prompt paper (Khashabi et al., 2021) later
showed, with regularization, you can control the
nearest neighbors without large drops in accuracy.

We see class labels in neighbors of prompts. They
persist in the “class-label” setting and are learned in the
other initialization methods.

● Lexically Similar Clusters:
○ Technology
○ technology
○ Technologies
○ technological
○ technologies

● More Diverse Clusters:
○ entirely
○ completely
○ totally
○ altogether
○ 100%

● We convert our “soft-prompts” to text by finding the tokens whose embedded
representation is closest to a prompt token based on cosine distance.

● Each prompt (size [T, H]) position gets N nearest neighbors
○ A prompt with 10 positions would result in 10 lists of 5 nearest

neighbors
● Looking at the clusters:

○ Prompts are very “word-like”, even when not initialized from word
embeddings.

○ Point out the clusters
○ A random point in the embedding space doesn’t tend to have these

clusters, these clusters are more akin to adding noise to a pre-existing
word

● Class labels are often nearest neighbors
○ The persist when using the class-label initialization.
○ They appear when using other initialization.

■ Class labels appear as NN for many prompt tokens. Possible
that the model has trouble localizing the information to a single
token. Because relative position information puts a lot of the
prompts in the same, max distance, bucket from a lot of the
input? Because of Dropout which is applied to the prompt?

● Definitely reading the tea leaves, but many words like “science”, “engineering”,
“technology” in the BoolQ prompt, that dataset has ~20% of questions in the
“Nature/Science” category. The prompt could be used to prime the model to
think in a specific context?

Analysis -
Prompt Discretization

● Turn prompts into the embedding
of their nearest neighbors

● Use that as the prompt
● Use that for generation (all zeros?)
● Use that for rank classification?

Analysis -
Attention Masking
Within your encoder, you can using
attention masking to decide what tokens
are allowed to attend to other tokens.

If Prompt Tokens are not allowed to
attend to text tokens, your prompt
activations will be consistent across a
dataset.

We found little difference between
several different attention masks for
simple tasks but full visibility was the
best, Zhang et al., (2021) show similar
results.

● It seems natural that text input should attend to the prompt variables (easiest
way for the prompt to influence the computation), but does it make sense for
the prompt to attend to the text tokens?

○ You prompt representation becomes dependent on your input.
Is this good? Or should the prompt representation through the
model remain consistent across all examples in a dataset?

● Zhang, et al., 2021 attention masking removes Attn(P_q, K, V) and
shows large performance losses.

● This is very related to our talk about what prompts on different parts of the
input do. Masking the attention is similar to not having that prompt.

Image from CPM-2: Large-scale Cost-effective Pre-trained Language Models
(https://arxiv.org/abs/2106.10715)

https://arxiv.org/abs/2106.10715

Analysis -
Bag of Prompts?
We found that post-hoc changes to the
order of the prompt tokens has varying
effect.

● Complete reverse of the prompt
gave the largest performance
drop, ~20 point drop on SST2

● Shuffling of the prompt gave
much smaller drops, between 5
and 10 points.

Suggests that the prompts are more of
a bag and the exact order is not that
critical.

● Part of this may come from the fact t5 uses relative attention and the max
bucket length is 128, some prompts are 100 tokens long meaning the majority
of the input will see the front section of the prompt as all the same distance
away.

Analysis -
Prompt Norms
We have observed that the norms of the
learned soft prompts are often much
higher than the norms of the frozen
embeddings

Large norms may be required to
overcome natural biases in the decoder
and control output generation.

● An artifact of Cross Entropy Loss
training where the objective
forces the gold label to be the
most probable generation of all,
not just the most probable of the
outputs we care about.

Type Mean Norm Std Dev

Embedding 297.35

Cross-Entropy
Prompt

1600.16 89.85

Perceptron
Prompt

299.08 24.37

● The norms of the learned prompt tokens are often much higher than the
embedded words.

● We think this may have to do with the prompts needing to make large changes
in attention scores.

● We think this may be because of training with the token-level cross-entropy
loss.

○ This makes us want to control the model output, not just rank the gold
class above others (this second approach only works on datasets with
known label outputs).

○ When we train using a ranking loss (Perceptron in this case) we see
much smaller norms.

■ When training like this we don’t have to worry about what the
model actually outputs.

Analysis -
Prompt Removal

05

FLAN (Wei et al., 2022) and
Large DecoderOnly
Prompt Tuning

● Accepted to ICLR 2022
● Google AI Blog Post

The next part of my work revolved around using prompt tuning with large decoder
only language models.

FLAN was accepted to ICLR 2022!

https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html

Collaborators

 Jason Wei Maarten Bosma Vincent Y Zhao Kelvin Guu Adams Wei Yu

 Me Lol Nan Du Andrew M. Dai Quoc V. Le

Jason Wei is also an AI Resident

FLAN

Can we train a model to be better in the
prompt-design-based
zero-shot/in-context-few-shot
setting?

Fine-tuning a model with “instructions”
helps it learn to understand new
instructions later.

Similar to T0 (Sanh et al., 2021), MetaICL (Min
et al., 2021) and Ouyang et al. (2022).

● Our base model is a 137B parameter dense transformer based language
model, trained on a mix of web, code, and conversational data.

● Few/Zero-Shot performance “just fell out” of GPT-3, it happened to work,
especially for tasks that could essentially be rewritten as LM completion

● Can we steer the model to be good at this instead of just hoping?

FLAN -
Power of Scale
As we scale a model, we expect it to
improve.

Here we see testing on the tasks we use
in training continues to go up with scale.

● As expected, larger models do better
● The untuned models have a slight dip when it hits larger scales because these

datasets are not super aligned to LM modeling so they tend to have a lot of
variance.

FLAN -
Power of Scale
When looking at held-out tasks, we see
that there is essentially a scale threshold
required for generalization.

Models need enough capacity before they
can generalize to unseen tasks.

● Echoing our findings in “The Power of Scale for Parameter-Efficient Prompt
Tuning” there is a scale threshold for generalization of strong Few/Zero-Shot
performance on held out tasks.

FLAN -
Prompt Tuning

Prompt Tuning with LaMDA (Thoppilan et al, 2022), a
Large Decoder-Only Transformer.

● In terms of both absolute parameter count
(137B), and depth (64 layers).

Instruction Tuning boosts prompt tuning
performance in both the low-resource and
full-dataset regimes.

Low-resource prompt tuning outperforms the mean,
and often max, performance of zero-shot inference

● Prompt Tuning as part of the FLAN paper was out first chance to try it in the
context of a DecoderOnly LM, all work with T5 uses EncoderDecoder models
where the prompt was on the Encoder.

○ This was also the first time we used Rank Classification, where the
Language Model scores over set of possible labels are calculated and
used instead of actually generating a label.

● The FLAN instruction tuning procedure creates a stronger NLP model in
addition to allowing it to deal with Instruction formatted inputs.

● Low-Resource Prompt Tuning with the FLAN model outperforms the mean,
and often max, performance of the Zero-Shot and Multi-Shot FLAN models,
even when using non-optimal (the GPT-3 style) input formatting.

Input Patterns and
Prompt Tuning
Prompt tuning in FLAN used a constant input
format (GPT-3 style) across checkpoints.

● Lose the advantage of the “instruction”
formatting FLAN is trained with.

Pilot experiments began to show that using
FLAN formatting did have an effect on
downstream performance, especially in the
few-shot setting.

● Results corroborated in Gu et al. (2021)

The exact formatting of input and output
can have large effects on final performance
in the few-shot setting.

● FLAN comparison used the LM-focused GPT-3 style prompts, even though
FLAN was tuned with a more “instruction” focused prompts. How does this
effect results? We saw that the learnable nature of Prompt Tuning does make
up for a lot of this, but it could still be leaving some performance on the floor.

● Similar to results from combining Prompt Design and Fine Tuning (Schick and

Schütze, 2021; Le Scao and Rush, 2021; Webson and Pavlick, 2021) where the input formatting can
help learnability.

06

SPoT: Soft Prompt Transfer (Vu et al., 2021)

● Accepted to ACL 2022

Now some work on increasing the performance of Prompt Tuning and some
interesting applications you can do with it.

Accepted to ACL 2022

Collaborators

Tu Vu Me lol Noah Constant Rami Al-Rfou Daniel Cer

Motivation -
MultiTask Learning
We have seen in models like T5, FLAN, and in
the literature that MultiTask training can really
help performance.

We see this in our own experiments too.

How can we apply this to Prompt Tuning?

MultiTask Model tuning out performs Single
Task Model Tuning.

● We have seen that multi-task training or multi-task pretraining can help boost
model performance.

○ We even see that in our original baselines with Model Tuning
● How can we use this for prompt tuning?

○ Especially when the limited capacity of the prompt makes putting
multiple tasks in the prompt hard.

Motivation -
Initialization
The learning curves for Prompt Tuning often
have steep jumps followed by long plateaus.

Suggests poor initialization.

What is “Large Language Model Pre-Training”
if not better initialization?

Prompt Tuning training can have 3 phases:
1) No meaningful model outputs.
2) The model has learned to restrict the

logits to valid tokens in the
vocabulary

3) The model learns the task

● Often when training prompts you can end up with a bit of unhealthy looking
learning curves.

○ You start with the prompt being unable to control the model output at
all, it outputs junk or nothing.

○ Then it jumps to restricting the model outputs to just the valid
classes—generally, the most common label.

○ Then it jumps to solving the task, with slow growth after that.
○ This is especially common with randomly initialized prompts.

● One of our collaborators (Dan) mentioned this is a bit like learning curves from
the 80s, when we didn’t know how to initialize models well.

○ Suggests poor prompt Initialization
■ Pre-training is at it core better initialization.

SPoT Motivation -
MultiTask Learning

SPoT Motivation -
Initialization

● We have seen that multi-task training or multi-task pretraining can help boost
model performance.

○ We even see that in our original baselines with Model Tuning
● How can we use this for prompt tuning?

○ Especially when the limited capacity of the prompt makes putting
multiple tasks in the prompt hard.

● Often when training prompts you can end up with a bit of unhealthy looking
learning curves.

○ You start with the prompt being unable to control the model output at
all, it outputs junk or nothing.

○ Then it jumps to restricting the model outputs to just the valid
classes—generally, the most common label.

○ Then it jumps to solving the task, with slow growth after that.
○ This is especially common with randomly initialized prompts.

● One of our collaborators (Dan) mentioned this is a bit like learning curves from
the 80s, when we didn’t know how to initialize models well.

○ Suggests poor prompt Initialization
■ Pre-training is at it core better initialization.

SPoT: Transfer Via
Initialization
The capacity of a prompt is too small to
expect top performance on a single task when
training on multiple tasks.

Instead, we initialize our prompt with a
prompt trained on a multi-task mixture.

● Starting with the prompt that knows
how to control the downstream model.

● Starting with any information from the
multi-task mixture that may help our
target task.

We can use prompt that is trained on a
mixture of tasks as the initialization for our
real task.

● SPoT: Soft Prompt Transfer via Initialization.
● General/Manually targeted Pretraining:

○ Train a Prompt on a large mixture of tasks.
○ Use that prompt as the initialization for our target task.
○ Experimentally find mixtures that work well.

SPoT: Transfer Via
Initialization
We no longer need scale to rival Model
Tuning.

Trained a Prompt on a Mixture of all the GLUE
(Wang et al., 2018) tasks

Then trained individual prompts for each
SuperGLUE task.

● Each prompt is initialized with the GLUE
mixture prompt at the start of training.

A large increase (1.1 points) in performance
when using the XXL model.

SPoT transfer increases model
performance across sizes until it is
competitive with Model Tuning with smaller
models and much stronger at size XXL.

● For strong SuperGLUE performance we transferred a prompt from GLUE.
● We trained one Prompt on a mixture of GLUE tasks.
● We then trained a new prompt for each SuperGLUE task

○ Initialized with the GLUE multi-task prompt.
● We catch up to Model Tuning at smaller model scales.
● There is a large performance gain at the XXL size.

SPoT: SuperGLUE

Only parameter efficient method that is near
fine-tuning performance.

Spot tunes 409.6K parameters per task on top of the
11B frozen T5 backbone.

● T5 tunes 11B parameters per task
● That is 0.0037% of the parameters
● This is not using prompt ensembles

● SPoT gave a really strong SuperGLUE performance
● We are only .1 points behind T5 with model tuning.
● This is really a whole different ball game when it comes to parameter

efficiency (0.0037%)
○ Many other methods that are “parameter-efficient” add around 3% of

parameters.
○ Again, 3% of the parameters for T5-XXL is basically a whole

BERT-Large (330M vs 340M).

SPoT: Results
We no longer need scale to rival Model
Tuning.

Only parameter efficient method that is near
fine-tuning performance.

● Spot tunes 409.6K parameters per
task on top of the 11B frozen
backbone

● That is 0.0037% of the parameters
● This is not using prompt ensembles

● For strong SuperGLUE performance we transferred a prompt from GLUE.
● We trained one Prompt on a mixture of GLUE tasks.
● We then trained a new prompt for each SuperGLUE task

○ Initialized with the GLUE multi-task prompt.
● We catch up to Model Tuning at smaller model scales.
● There is a large performance gain at the XXL size.

● SPoT gave a really strong SuperGLUE performance
● We are only .1 points behind T5 with model tuning.
● This is really a whole different ball game when it comes to parameter

efficiency (0.0037%)
○ Many other methods that are “parameter-efficient” add around 3% of

parameters.
○ Again, 3% of the parameters for T5-XXL is basically a whole

BERT-Large (330M vs 340M).

SPoT:
Targeted Transfer via
Prompt Similarity
A model is some location in a parameter
space that solves some task

We expect models that are close in that space
solve similar tasks.

● Large models like t5 are hard to
compare.

Prompts have already shown “word-like”
behavior.

● Prompt Similarity can be a proxy for
what prompts solve similar tasks, and
therefore which tasks are similar.

Prompt Similarity shows reasonable task
clusters. Clusters seem to be more related
to task than domain as QNLI is very
dissimilar to SQuAD, despite them being
built on the same dataset.

CxC and STS-B are actually the same task, collected with the same method,
by our collaborator Daniel Cer. The model found the cofounder of Dan

SPoT:
Targeted Transfer via
Prompt Similarity

1. Build a bank of Source tasks
● We found having “Key” and

“Value” versions of the prompts
worked best.

● “Keys” are prompts trained for
only a few thousand steps.

● “Values” are prompts are the
prompts the performed best on
the dev set.

2. Train a “query” prompt on your target
task.

3. Find the best source task via query and
key similarity.

4. Initialize with that source task’s value
and train on the target task.

Instead of empirically finding which tasks
transfer the best to other tasks, we can use
the similarity between prompts to select the
task to use as an initialization point.

SPoT:
Targeted Transfer via
Prompt Similarity
Trained 16 source tasks (3 different prompts with
different seeds) and trained 10 target tasks
prompts

Selected the top-K source tasks based on prompt
similarity

Trained on the target task, initialized with one of
the top-K source prompts.

Results:
● Training with only the top-3 tasks, we

already recover over half of the oracle
performance

● K=15 recovers almost all of the
performance

07

Continuing Work and
Related papers

● Multilingual and Zero-Shot cross-lingual performance and
separation of task and language prompt parameters.
(Zhao and Schütze, 2021)

● Transfer of prompts between models. (Su et al., 2021)
● Generation of prompts with other models. (Gao et al., 2021)
● Application of Prompt Tuning to larger models.
● Interpretation of prompts
● Composability of prompts

Some examples of the current projects we are working on. I’ve also included a few
related papers where if you read that one and then thing “prompt tuning” you should
be able to get a clear idea of what we are doing.

● Using mT5, and tasks where you train in one language and then apply the
model to the same task in a different language.

● Can you use a previous prompt as a starting point when you refresh a model,
or move them between different sizes.

● Can you generate a real-valued prompt from a snapshot of a dataset and can
that generalize to new datasets.

● Bigger is Better?

References
● Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, et al. 2020. Language Models Are
Few-Shot Learners. Advances in Neural Information Processing Systems, 33:1877–1901.

● Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

● Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 2021. PPT: Pre-Trained Prompt Tuning for Few-Shot Learning. arXiv:2109.04332 [cs], September.
● Tianyu Gao, Adam Fisch and Danqi Chen, 2021. Making Pre-trained Language Models Better Few-shot Learners. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3816–3830, Online, August. Association
for Computational Linguistics

● Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. 2021. WARP: Word-Level Adversarial ReProgramming. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4921–4933, Online,
August. Association for Computational Linguistics.

● Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick and Graham Neubig. 2021. Towards a Unified View of Parameter-Efficient Transfer Learning. ArXiv:2110.04366,
October.

● Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-Efficient
Transfer Learning for NLP. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 2790–2799. PMLR, June.

● Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can We Know What Language Models Know? Transactions of the Association for Computational
Linguistics, 8:423–438.

● Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sameer Singh, Sean Welleck, Hannaneh Hajishirzi, Tushar Khot, Ashish Sabharwal and Yejin Choi. 2021.
PROMPT WAYWARDNESS: The Curious Case of Discretized Interpretation of Continuous Prompts. ArXiv:2112.08348 [cs]. Dec.

● Teven Le Scao and Alexander Rush. 2021. How Many Data Points Is a Prompt Worth? In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 2627–2636, Online, June. Association for Computational Linguistics.

● Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Online and Punta Cana, Dominican Republic, November. Association for Computational Linguistics.

● Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing. arXiv:2107.13586 [cs], July.

● Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT Understands, Too. arXiv:2103.10385 [cs], March.

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2109.04332
https://aclanthology.org/2021.acl-long.295/
https://doi.org/10.18653/v1/2021.acl-long.381
https://arxiv.org/abs/2110.04366
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/2112.08348
https://doi.org/10.18653/v1/2021.naacl-main.208
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2103.10385

References
● Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597, Online, August. Association for
Computational Linguistics.

● Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak Lee, Marc’Aurelio Ranzato, and Arthur Szlam. 2020. Few-Shot Sequence Learning with Transformers. arXiv:2012.09543 [cs],
December.

● Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2021. MetaICL: Learning to Learn In Context. arXiv:2110.15943 [cs], October.
● Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases? In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China, November. Association for Computational Linguistics.

● Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with
human feedback. ArXiv:2203.02155 [cs], March.

● Guanghui Qin and Jason Eisner. 2021. Learning How to Ask: Querying LMs with Mixtures of Soft Prompts. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 5203–5212, Online, June. Association for Computational Linguistics.

● Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving Language Understanding by Generative Pre-Training.
● Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning

with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21(140):1–67.
● Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari,

Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf and Alexander M. Rush. 2021. Multitask Prompted Training Enables Zero-Shot Task
Generalization. arXiv:2110.08207 [cs], Oct.

● Timo Schick and Hinrich Schütze. 2021. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pages 255–269, Online, April. Association for Computational Linguistics.

● Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated
Prompts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4222–4235, Online, November. Association for
Computational Linguistics.

● Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun and Jie Zhou. 2021. On Transferability of Prompt Tuning
for Natural Language Understanding. arXiv:2111.06719 [cs], Nov.

https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2012.09543
https://arxiv.org/abs/2110.15943
https://doi.org/10.18653/v1/D19-1250
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2021.naacl-main.410
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://www.aclweb.org/anthology/2021.eacl-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://arxiv.org/abs/2111.06719
https://arxiv.org/abs/2111.06719

References
● Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee,

Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos,
Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo,
Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed
Chi, and Quoc Le. 2022. LaMDA: Language Models for Dialog Applications. ArXiv:2201.08239 [cs], Jan.

● Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. 2021. SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer. arXiv:2110.07904 [cs], October.
● Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019. SuperGLUE: A Stickier Benchmark for

General-Purpose Language Understanding Systems. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
● Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language

Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium, November.
Association for Computational Linguistics.

● Albert Webson and Ellie Pavlick. 2021. Do Prompt-Based Models Really Understand the Meaning of Their Prompts? arXiv:2109.01247 [cs], September.
● Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. 2022. Finetuned Language Models Are Zero-Shot

Learners. In Proceedings of ICLR 2022, April.
● Zhengyan Zhang, Yuxian Gu, Xu Han, Shengqi Chen, Chaojun Xiao, Zhenbo Sun, Yuan Yao, Fanchao Qi, Jian Guan, Pei Ke, Yanzheng Cai, Guoyang Zeng, Zhixing Tan, Zhiyuan

Liu, Minlie Huang, Wentao Han, Yang Liu, Xiaoyan Zhu, and Maosong Sun. 2021. CPM-2: Large-Scale Cost-Effective Pre-Trained Language Models. arXiv:2106.10715 [cs], June.
● Mengjie Zhao and Hinrich Schütze. 2021. Discrete and Soft Prompting for Multilingual Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, pages 8547–8555, Online and Punta Cana, Dominican Republic, Nov. Association for Computational Linguistics
● Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021. Factual Probing Is [MASK]: Learning vs. Learning to Recall. In Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5017–5033, Online, June. Association for Computational Linguistics.

https://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2110.07904
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2106.10715
https://aclanthology.org/2021.emnlp-main.672/
https://doi.org/10.18653/v1/2021.naacl-main.398

Thank You
Brian Lester

Open Source Implementation: https://github.com/google-research/prompt-tuning

@blester125
https://blester125.com

Google AI Resident

Thanks for your time, hopefully this was either interesting or you got a good nap in.

We have open-sourced our implementation, it includes instructions to get running on
Google Cloud with TPU training to enable really big models. We have also been
adding it. For example, we added the ability to control the nearest neighbors of the
prompt tokens like in the Wayward Prompts (Khashabi et al., 2021) paper.

If think prompt tuning is a cool idea hit me up on twitter. If you think the whole thing is
stupid and just want to yell at me about how dumb it is, feel free to reach out too.

https://github.com/google-research/prompt-tuning
https://blester125.com

